日本工学院専門学校開講		開講年度	2020年度(平成31年度)		科目名	電子工作実習2		
科目基礎情報								
開設学科	電子・電気科		コース名	電子工学コース		開設期	後期	
対象年次	1年次		科目区分	必修		時間数	60時間	
単位数	2単位						授業形態	実習
教科書/教材	各実験毎にプリントを配布する。							
担当教員情報								
担当教員	横山 重明				実務経験の有	無・職種	職種 有・電気通信	

学習目的

電子工作実習1の知識・技術をベースにして、高度な製作物を通して、さらなる知識・技術のスキルアップを目指している。LEDの立体タワーの製作などを通して、個々の機能を統合した高度な製作に取り組むことで、「ものづくり」の実践力と実力を身に付けることが、この科目のねらいである。

到達目標

電子工作実習1よりも難度の高い電子工作を行うことにより、システムとしての「ものづくり」を体験し、知識・技術のスキルアップを図る。より 高いレベルでの「ものづくり」ができるようになることが目標とする。

教育方法等

LEDの立体タワーの製作や小型ステレオオーディオセットの製作など、より難度の高い電子工作を学びます。製作物については、他の実 習で使用したり、他の実験の測定に用いる場合がある。オーディオセットなどのシステムとしての製作を行うことで、複雑な製品もそれぞ れの機能の集合であることを理解できる。

特に指定が無い限り実習は各個人で行う。実習内容によっては二人一組で実習を行う場合がある。理由のない欠席や遅刻は認めない。欠 席または遅刻により課題が終了しない場合は、追実習を受けなければならない。実習室内での飲食は禁止する。実習中は他の学生に配慮し、私語は慎むこと。実習内容についての質問は積極的に受け付ける。授業時数の4分の3以上出席しない者は、未履修となる。

	種別	割合	備 考
評	実技	50%	実習内容の理解度と到達度を総合的に評価する
価	レポート	30%	実習内容の理解度を確認するために実施する
方	平常点	20%	積極的な授業参加度、授業態度によって評価する
法			

授業計画(1回~15回)

回	授業内容	各回の到達目標
1 🗆	ガイダンス	実習の目的と内容、一般的注意事項について説明する
2 🗓	LEDイルミネーションライトの製作	イルミネーションLEDについて理解し、イルミネーションライトを製作する
3 回	LEDタワーの製作 1	LEDの立体タワーを製作する
4 回	LEDタワーの製作 2	上記のLED立体タワー製作の続き
5 🗓	ステレオオーディオセットの製作 1	ステレオアンプキットを製作し、ステレオ信号について理解する
6 回	ステレオオーディオセットの製作 2	ステレオアンプキット製作の続き
7 回	ステレオオーディオセットの製作3	ミニスピーカーの加工を通して、スピーカーの原理を理解する
8 🗆	ステレオオーディオセットの製作4	ステレオアンプにスピーカーを接続し、動作確認を行う
9 🗆	ステレオオーディオセットの製作 5	電池とACアダプターの切り替え回路の製作を通し、電源切り替え回路について理解する
10回	ステレオオーディオセットの製作 6	上記製作の続き
110	ステレオオーディオセットの製作7	ステレオオーディオセットのケース加工を行う工作機械・装置の取り扱いについて理解する
12回	ステレオオーディオセットの製作8	上記の続きと組込み作業組込みと実装技術を理解する
13回	ステレオオーディオセットの製作 9	ステレオプラグの製作を行い、構造を理解する
14回	ステレオオーディオセットの製作10	ブルートゥースユニットの組込みブルートゥースユニットについて理解する
15回	ステレオオーディオセットの製作11	ステレオオーディオセットの機能確認