科目名	バイオ実験の方法と考え方							年度	2024
英語科目名	Introduction to biotechnology							学期	前期
学科・学年	応用生物学科 1年次	必/選	必	時間数	30	単位数	2	種別※	講義
担当教員	河内 隆	教員の実務経験		無	実務経験の職種			•	

【科目の目的】

実験レポートの記述に必要な「客観的・論理的・具体的」な文章を書けるようにする。実験データを表や図を用いて正確にまとめることができるようにする。溶液の濃度計算(モル、容量モル濃度、質量パーセント濃度、溶液の希釈)ができるようにする。さまざまなバイオ実験で用いられる実験器具の名称を知り、正しい手順で取り扱えるようにする。

【科目の概要】

実験の基本的注意事項について学びます。レポートや報告書の作成方法について学びます。

【到達目標】

- A. 授業にはすべて出席する必要がある。体調管理を万全に整え、遅刻欠席のないように務めることができる。

- B. 実験で用いられる実験器具の名称を知り、正しい手順で取り扱える。 C. 実験データを表や図を用いて正確にまとめることができる。 D. 溶液の濃度計算(モル、容量モル濃度、質量パーセント濃度、溶液の希釈)ができる。 E. レポートの記述に必要な「客観的・論理的・具体的」な文章を書ける。

【授業の注意点】

遅刻・欠席は授業を理解できなくなる主原因である。日々の体調管理をしっかり行い、授業に必ず出席すること。復習を必ず行い、 授業内容をその日のうちに定着させなければ、テスト前に膨大な作業を行うことになり、合格が困難となる。授業時数の4分の3以 上出席しない者は定期試験を受験することができない。

評価基準=ルーブリック						
ルーブリック	レベル 5	レベル4	レベル 3	レベル2	レベル1	
評価	優れている	よい	ふつう	あと少し	要努力	
到達目標 A	本科目の授業に無遅刻・無欠席である。	本科目の授業に1回だ け遅刻した。	本科目の授業に2回以 上遅刻または1日欠席 した。	本科目の授業に3回以 上遅刻または2日欠席 した。	本科目の授業に3日以上欠席した(出席時数の4分の3以上出席していない)。	
到達目標 B	実験器具の名称を間違いなく言え、使用方法 も説明できる。	実験器具の名称や使用 方法を概ね説明でき る。	実験器具の名称は言え るが、使用方法は覚え ていない。	実験器具の名称が数個 しか言えず、使用方法 も説明ができない。	実験器具の名称を言えず、使用方法も全く覚えていない。	
到達目標 C	実験データを表や図を 用いて正確にまとめる ことができる。	実験データを表や図を 用いて、1・2箇所の 誤りはあるが、まとめ ることができる。	実験データを表や図を 用いて、3・4箇所の 誤りはあるが、まとめ ることができる。	実験データを表や図を 用いて、5箇所以上の 誤りはあるが、まとめ ることができる。	実験データを表や図でまとめることができない。	
到達目標 D	モル、容量モル濃度、 質量パーセント濃度、 溶液の希釈のすべてが 間違いなく計算でき る。	モル、容量モル濃度、 質量パーセント濃度、 溶液の希釈のうち3つ が計算できる。	モル、容量モル濃度、 質量パーセント濃度、 溶液の希釈のうち2つ が計算できる。	モル、容量モル濃度、 質量パーセント濃度、 溶液の希釈のうち1つ が計算できる。	モル、容量モル濃度、 質量パーセント濃度、 溶液の希釈のいずれも 計算できない。	
到達目標 E	文章表現として客観 的・論理的・具体的に 書くことができる。	文章表現として客観 的・論理的・具体的表 現を概ね行うことがで きる。	文章表現として客観 的・論理的・具体的表 現のうち2つ行うこと ができる。	文章表現として客観 的・論理的・具体的表 現のうち1つ行うこと ができる。	「客観的・論理的・具体的」な文章が書けない。	

【教科書】

①日本工学院八王子専門学校応用生物学科編「基礎バイオ実験」、②授業時間中に配布する補助プリント教材、③「サイエンスビュー 生物総合資料」実教出版、④「サイエンスビュー 化学総合資料」実教出版

【参考資料】

必要に応じてプリント教材を配布する。

【成績の評価方法・評価基準】

試験と課題を総合的に評価する。

※種別は講義、実習、演習のいずれかを記入。

	科目名		バイオ実験の方法と考え方				
	英語表記	Introduction to biotechnology					期
回数	授業テーマ	各授業の目的	授業内容	到達目標=修得するスキル		評価方法	自己評価
1	1 実験の流れと安全 教育 2	実験の流れを理解し、	1 実験の予習	実験の流れを理解して、フローチャート (工程E図) が作成できる。	図、流れ	1	
2		危険予知活動を行う。	2 安全教育	誤った実験操作を行って災害を引き起こさないよう、危 険予知活動ができる。			
3	レポートの書き方	レポート、報告書の書	1 レポートのフォーマット	実験レポートのフォーマット(図や表)を知り、 れたルール通りに書くことができる。	決めら	1	
4		き方を学ぶ。	報告文 (実験結果・考 察) の書き方	報告文として客観的・論理的・具体的な文章が書ける。			
5		では、他学計算の基礎を知っている。	1 SI単位系	SI単位系とは何かを知り、化学計算で正しく扱え	さ る。	1	
6			2 有効数字	有効数字とは何かを知り、化学計算で正しく扱え	さる 。	1	
7	単位の換算とmol 数の計算	単位の換算とmol数の計算を学ぶ。	1 単位換算法	単位換算法の考え方を身につけて、化学計算に成る。	芯用でき	1	
8			2物質量mol	物質量molの定義を知り、単位換算法で各物質の 数に変換できる。	g数をmol	1	
9	9 濃度計算① 10	容量モル濃度と質量% 濃度の計算を学ぶ。	1 容量モル濃度	単位換算法で容量モル濃度が計算できる。		1	
			2 質量%濃度	単位換算法で質量%濃度が計算できる。		1	
11	11 濃度計算② 12	単位換算法を駆使し	1 濃度単位の相互変換	単位換算法で濃度単位の相互変換(容量モル濃度量%濃度)ができる。	度⇔質	1	
12		て、濃度単位の変換方 - 法を学ぶ。	複数の溶質が同一の溶 2 媒に溶けている場合の 濃度表現	単位換算法で複数の溶質が同一の溶媒に溶けてい 濃度計算ができる。	いる時の	1	
13	13 溶液の希釈 14	溶液の希釈操作と濃度 変化について学ぶ。	1 溶液の希釈と濃度変化	単位換算法で希釈後の濃度計算ができる。			
14			2 濃度単位が異なる場合の計算	単位換算法で原液の濃度単位と希釈後の濃度単位 る場合の希釈計算ができる。	立が異な	1	
15	まとめ	第1回から14回までの 内容を総復習する。	第1回から14回までの 内容を総復習する。	第1回から14回までの内容を理解している。		1	
			1 内容を総復習する。	第1回から14回までの内容を理解している。			1

評価方法:1.小テスト、2.パフォーマンス評価、3.その他

自己評価:S: とてもよくできた、A: よくできた、B: できた、C: 少しできなかった、D: まったくできなかった

備考 等