科目名	電気機器1							年度	2024	
英語科目名	Electrical Appliance 1							学期	後期	
学科・学年	電子・電気科 電気工事コース 1	年次	必/選	必	時間数	60	単位数	4	種別※	講義
担当教員	萩原 重行		教員の実務経験		有	実務経験	険の職種	電気技術		者

【科目の目的】

電気機器に関する、電動機や変圧器等を学習することにより、高圧電気技術のより効果的な理解を深める。この電気機器の内容を理解することにより、技術的な高度な理解と関係する国家資格を取得することにより、その総合力を備えたリーダーとしての基盤の基礎固めとする。そして、電気工事業界に貢献できる人材の育成を図ることを目的とする。

【科目の概要】

電気機器の仕組みや動作原理、構造などについて学びます。

【到達目標】

- A. パワーエレクトロニクス (電力制御・応用) について理解している B. 電動機の種類・構造・原理を理解している
- C. 照明機器の種類・構造・原理を理解している D. 分電盤・配電盤について理解している
- E. 電気材料について理解している

【授業の注意点】

授業中の私語や授業態度などには厳しく対応する。理由のない遅刻や欠席は認めない。授業時限数の4分の3以上出席しない者は定期試験を受験することができない。遅刻、欠席、課題提出の遅れや未提出は、評価の対象とする。尚、オンライン授業であっても同じ条件となる。

評価基準=ルーブリック							
ルーブリック 評価	レベル 5 優れている	レベル4	レベル 3 ふつう	レベル2 あと少し	レベル 1 要努力		
到達目標 A	パワーエレクトロニク スについて理解し、実 践で選別・使用するこ とが出来る	パワーエレクトロニク スについて理解し、説 明できる		パワーエレクトロニク スについて知っている	パワーエレクトロニク スについて知らない		
到達目標 B	電動機について理解 し、実践で使用するこ とが出来る	電動機について理解 し、説明することが出 来る	電動機について理解し ている	電動機について知っている	電動機について知らない		
到達目標 C	照明機器について理解 し、実践で使用するこ とが出来る	照明機器について理解 し、説明できる	照明機器について理解 している	照明機器について知っ ている	照明機器について知ら ない		
到達目標 D	分電盤・配電盤につい て理解し、実践で使用 することが出来る	分電盤・配電盤につい て理解し、説明できる	分電盤・配電盤につい て理解している	分電盤・配電盤につい て知っている	分電盤・配電盤につい て知らない		
到達目標 E	電気材料について理解 し、実践で選別・使用 することが出来る	電気材料について理解し、説明できる	電気材料について理解している	電気材料について知っ ている	電気材料について知らない		

【教科書】

レジュメ・資料を配布する。

【参考資料】

【成績の評価方法・評価基準】

試験:70%試験を総合的に評価する。小テスト:15%授業内容の理解度を確認するために実施する。平常点:15%積極的な授業参加 度、授業態度によって評価する。

演習のいずれかを記入。

	科目名	科目名 電気機器 1			年度	2024		
	英語表記	Electrical Appliance 1		ppliance 1	学期	学期 後		
回数	授業テーマ	各授業の目的	授業内容	到達目標=修得するスキル		評価方法	己評	
1 電気機器の概要	電気機器・パワーエレクトロニクスの役割について学ぶ	1 電気エネルギー 電気エネルギーの特徴について理解する						
		2 電気エネルギーの活用	発生から消費までの流れを理解する		3			
		3 省エネルギー技術						
	2 電気材料	電気材料の種類と特性について理解する	1 電線材料					
2			性 2 磁性材料 磁性材料の種類と磁気特性について理解する 3 絶縁材料 絶縁材料の種類と用途について理解する					
		熱放射を利用した照明 について理解する 放電現象を利用した照 明について理解する	1 白熱電球 白熱電球の構造・特徴について理解する					
3	3 照明機器1		2 ハロゲン電球	ハロゲン電球の構造・特徴について理解する		3		
			1 蛍光灯	蛍光灯の構造・特徴について理解する		\vdash		
4	4 照明機器2		2 点灯方式1 スターター方式、ラビッドスタート式について理解する					
1 ///////			3 点灯方式2	<u> </u>	1			
	5 照明機器3	放電現象を利用した照 明について理解する	1 水銀灯	インバータ式、整流・平滑回路について理解する 水銀灯の構造・特徴について理解する				
5								
	その他の発光原理を利					3	1	
6	照明機器4	用した照明について理 解する						
		71 / 3	3 リモコンスイッチ リモコンスイッチの動作原理を理解する					
_		直流電動機の原理につ	1トルクと出力 トルクと出力の関係について理解する					
7 直流電動機1	いて理解する	2 世起電力と電機士 電機士の回転と世起電力の関係を理解する						
			3 電機子反作用と防止法 電機子の反作用の防止法について理解する					
0	表达 承到 機 0	直流電動機の特性について理解する	1 速度・トルク特性 負荷の増減とトルク、回転速度の関係について理解 正流電動機の特性につ 2 始動・速度制御 始動電流と速度制御の方法について理解する		90	3		
8	直流電動機 2		つて理解する 2 好動・速度制御 好動電流と速度制御の方法について理解する 電動機の逆転方法と制動方法について理解する					
			1 原理と構造	固定子と回転子の種類と特性について理解する		-	\vdash	
9	三相誘導電動機1	三相誘導電動機の原理 について理解する	相誘導電動機の原理 2 年毎回路 第一回路 2 年毎回路 2 年 日 2 年 日 2 日 3 日 3 日 3 日 3 日 5 日 5 日 5 日 5 日 5 日 5				3	
9	二年的 寺电劃域 1		3 滑り	滑りの定義について理解する		- 3		
			1 速度・トルク特性					
10	三相誘導電動機 2	電動機2 三相誘導電動機の特性 について理解する	相誘導電動機の特性 2 始動・速度制御 始動電流と速度制御の方法について理解する			3		
			3 逆転法と制動法	電動機の逆転方法と制動方法について理解する		1		
		その他の誘導電動機の 種類と特性について理	1 特殊かご形態導電動機 種類と特徴について理解する					
11	各種誘導電動機		の他の誘導電動機の					
		解する	解する 3 誘導電圧調整器 構造と原理について理解する			3		
		期電動機 三相同期電動機の原理 について理解する	1 原理と構造 同期発電機と同期電動機の比較と回転磁界について理解す		る		-	
12	三相同期電動機						3	
			3 始動法 始動法の種類と負荷の力率改善法について			† Ĭ		
	13 その他の電動機	小型モータについて理 M 解する	1 小形直流モータ 小形直流モータの種類と特徴について理解する			+ +		
13								
			3 小形交流モータ	小形交流モータの種類と特徴について理解する				
		記電盤 分電盤・配電盤につい て理解する	1 分電盤	住宅用分電盤について理解する				
14	14 分電盤・配電盤		2 アンペアブレーカー	アンペアブレーカーについて理解るする		3		
			1 ヒューズ	ヒューズの種類・特性について理解する			<u> </u>	
15	記線 田油 <u>ド</u>	回路保護機器について	2 配線用遮断器	配線用遮断器の種類・特性について理解する				
15 配線用遮断	自山水/77)巡询) 宿	理解する	5			3		
	1.71	0 0 = = = = = = = = = = = = = = = = = =	3 漏電遮断器 漏電遮断器の種類・特性について理解する オーマンス評価、3.その他					

評価方法:1. 小テスト、2. パフォーマンス評価、3. その他

自己評価:S:とてもよくできた、A:よくできた、B:できた、C:少しできなかった、D:まったくできなかった

備考 等