	科目名	電磁気 1 Electromagnetism 1								年度	2024
Ī	英語科目名									学期	前期
Ī	学科・学年	電子・電気科 電気工学コース	1年次	必/選	必	時間数	60	単位数	4	種別※	講義
Ī	担当教員	渡邉 和之			教員の実務経験 無 実務経験の職種						

【科目の目的】

本質的な理解目標である「電気とは何か」を理解するために、「エネルギーとは何か」をテーマに、電気エネルギー・磁気エネル ギーに特化して、特性・性質・変換方法を学び、関係性を理解する。

【科目の概要】

交流回路や発電機の基礎となる、磁界、電磁力、磁気回路、電磁誘導について学ぶ。

【到達目標】

- A. 基本単位・組立単位を理解し、基礎計算や文字式の変形ができる
- B. 電流と磁界の関係を理解し、磁界の向きや大きさなど計算することができる
- c. 電流と磁界による電磁力やトルクについて理解し、計算することができる D. 磁束の通り道である磁気回路を理解し、計算することができる
- E. コイルに起電力が発生する仕組みや、各種法則を理解し計算することができる

【授業の注意点】

この授業では、授業に取り組む姿勢・積極性を重視する。キャリア形成の観点から、授業中の私語や受講態度などについては厳し く対応する。理由のない遅刻や欠席は認めない。授業時間の4分の3以上出席しない者は定期試験を受験することができないので 注意すること。尚、オンライン授業であっても同じ条件となる。

	評価基準=ルーブリック								
ルーブリック 評価			レベル3 ふつう	レベル2 あと少し	レベル 1 要努力				
到達目標 A	基本単位・組立単位を理解し、基礎計算や複雑な 文字式の変形ができる	単位を理解して、基礎計 算はできるが文字式の変 形はできる	単位を理解して、基礎計 算はできるが文字式の変 形はスムーズにできない	単位は理解できていない が、基礎計算はできる	単位の理解ができず、文 字式の変形も基礎計算も できない				
到達目標 B	電流と磁界の関係を理解 し、磁界の向きや大きさ など応用問題も解ける	電流と磁界の関係を理解 し、磁界の向きや大きさ など計算することができ る	電流と磁界の関係を理解 しているが、複雑な計算 はできない	電流と磁界の関係が理解 できないが、基礎計算は できる	電流と磁界の関係が理解 できず、計算することも できない				
到達目標 C	電流と磁界による電磁力 やトルクについて理解 し、応用問題も解ける	電流と磁界による電磁力 やトルクについて理解 し、計算することができ る	電磁力やトルクについて 理解しているが、複雑な 計算はできない	電磁力やトルクについて 理解できないが、基礎計 算はできる	電流と磁界による電磁力 やトルクについて理解で きず、計算することもで きない				
到達目標 D	磁束の通り道である磁気 回路を理解し、応用問題 も解ける	磁束の通り道である磁気 回路を理解し、計算する ことができる	磁気回路は理解している が、複雑な計算はできな い	磁気回路を電気回路に置き換えて考えることはできるが、計算はできない	磁気回路が理解できず、 計算することもできない				
到達目標 E	コイルに起電力が発生す る仕組みや、各種法則を 理解し応用問題も解ける	コイルに起電力が発生する仕組みや、各種法則を 理解し計算することができる	各種法則は理解している が、複雑な計算はできな い	各種法則は理解できない が、基礎計算はできる	各種法則を理解できず、 計算することもできない				

【教科書】

電気理論基礎1 実教出版

【参考資料】

資料を配布する。

【成績の評価方法・評価基準】

試験:70%試験を総合的に評価する。小テスト:15%授業内容の理解度を確認するために実施する。平常点:15%積極的な授業参 加度、授業態度によって評価する。

※種別は講義、実習、演習のいずれかを記入。

科目名 英語表記		電磁気 1 Electromagnetism 1					2024	
							前期	
回数	授業テーマ	各授業の目的	授業内容	到達目標=修得するスキル	•	価	1 1	
		基本単位・組立単位・SI	1 基本単位 基本単位を理解している					
1	電気物理量の表し方	接頭語について理解する	2 単位,SI接頭語	組立単位・SI接頭語を理解している				
			3 文字式の変形	文字式の変形を行うことができる				
	磁石と電気	磁気現象や磁気誘導、磁 極間に働く力について理 解する	1 磁気現象	磁力,磁極,磁界の言葉の意味を理解している				
2			2 磁気誘導	磁気誘導を理解している				
			3 クーロンの法則	法則を理解し、関係式を用いて計算できる				
	電流による磁界①	電流が作る磁界について 理解する、磁界の強さを 計算できる	1 直線状導体	アンペア右ネジの法則を理解している				
3			2 円形コイル	電流の向きと磁界の方向を理解している		3		
			3 点磁荷	磁界の大きさを求めることができる				
	電流による磁界②	電流が作る磁界について 理解する、磁界の強さを 計算できる	1 ビオ・サバール	ビオ・サバールの法則を用いた計算ができる				
4			2 アンペア周回路	アンペア周回路の法則を用いた計算ができる		3		
			3 環状コイル	磁界の強さを求めることができる				
			1 円形コイル	磁界の強さを求めることができる			1	
5	電流による磁界③	電流が作る磁界について 理解する、磁界の強さを	2 N巻コイル	磁界の強さを求めることができる				
		計算できる	3 直線状導体	磁界の強さを求めることができる		_		
			1 磁束	磁束の定義を理解している			1	
6	電磁力	磁界中の電流に働く力に ついて理解する	2 磁束密度	磁界の大きさと磁束密度の関係がわかる		3		
			3 電磁力	フレミング左手の法則を理解している				
	直線状導体に働く力	直線状導体に働く力の大きさを求める	1 三角関数	三角関数を理解している			+	
7			2 角度がない場合	力の大きさを求めることができる		3		
,			3 角度がある場合	力の大きさを求めることができる		~		
	トルク	方形コイルに働くトルク - を理解する	1 トルクの計算①	方形コイルに働くトルクの計算ができる			+	
8			2 トルクの計算②	トルクの変化を理解している		3		
0			3 直流電動機	直流電動機の仕組みについて理解している		~		
			1 反発力・吸引力	導体が作る磁界と電流の向きの関係がわかる			-	
9	平行な直線状導体間に働く力	2本の平行な直線状導体間 に働く力を理解する	2 導体間に働く力	力の大きさを求めることができる		3		
9			2 等件间に働く刀	力の人ささを求めることができる		- 3		
			1 磁気回路	磁気回路を電気回路に置換えて考えられる			-	
1.0	学与同的	磁気回路を理解する		版		_		
10	磁気回路		2 透磁率			3		
			3 磁気抵抗	磁気抵抗を求めることができる			₩	
	エアギャップのある - 磁気回路	る エアギャップのある磁気 回路を理解する	1 直列・並列回路	磁気抵抗の直列・並列回路を理解している				
11			2 磁気回路	エアギャップのある磁気回路の計算ができる		3		
			3漏れ磁束、遮へい	漏れ磁束と磁気遮へいを理解している				
	磁化曲線	磁性体の磁束密度と磁界	1 磁化曲線	BH曲線、磁気飽和を理解している		_		
12		の強さの関係について理 解する	2 特性	ヒステリシスループを理解している		3		
		731 / 0	3 ヒステリシス損	ヒステリシス損を理解している				
	電磁誘導誘導起電力	電磁誘導によって生じる 起電力の大きさと向きを 理解する	1 電磁誘導	電磁誘導を理解している		-		
13			2 大きさと向き	ファラデーの法則、レンツの法則がわかる		3		
			3 磁束密度と磁界	誘導起電力と磁束鎖交数を理解している				
	直線状の導体に発生する誘導起電力	E 直線状の導体に発生する 誘導起電力を理解する	1 誘導起電力	フレミング右手の法則を理解している				
14			2 垂直の場合	誘導起電力を求めることができる		3		
			3 角度がある場合	誘導起電力を求めることができる				
	渦電流	渦電流を理解する	1 渦電流、渦電流損	渦電流、渦電流損、鉄損について理解する				
15			2 アラゴの円板	円板が回転する理由を説明できる		3		
		Ī	3 渦電流の利用	渦電流を利用したものを挙げることができる)			

評価方法:1.小テスト、2.パフォーマンス評価、3.その他

自己評価:S:とてもよくできた、A:よくできた、B:できた、C:少しできなかった、D:まったくできなかった

備考 等