科目名	デジタル回路							年度	2025
英語科目名	Digital Circuits							学期	前期
学科・学年	ロボット科 1年次	必/選	必	時間数	30	単位数	2	種別※	講義
担当教員	古山 伸	教員の実務経験		無	実務経験の職種				

【科目の目的】

ロボットの制御系(電子回路)を開発できる力を身に着けます・

【科目の概要】

ロボット制御の基本となるデジタル技術、2進法や論理回路などについて学びます。

【到達目標】

1)数値を2進数(デジタル表現)や16進数等で表したり、基数変換できる。2)論理式を使った論理演算が行え、論理関数を真理値表で表現しカルノー図等を用いて簡単化ができる。3)論理素子を用いてこれらを回路として表現でき、その機能を説明できる。さらに、基本的な組合せ論理回路を設計しその動作が理解できる。4)フリップフロップの動作を理解して、簡単な順序回路を設計しその動作が理解できる。

【授業の注意点】

授業の予習・復習および演習については自学自習により取り組み学習する。教科書をもとにして板書による説明で講義は進行するので、各自でノートをとり復習等に役立てる。レポート等は必ず指定期日までに提出する。定期試験だけでなく予習・復習の自学自習も含めて評価されるので、自学自習の習慣を身につけることが必要。ただし、授業時数の4分の3以上出席しない者は定期試験を受験することができない。

評価基準=ルーブリック							
ルーブリック	レベル 5	レベル4	レベル3	レベル2	レベル 1		
評価	優れている	よい	ふつう	あと少し	要努力		
到達目標 A	標本化を理解いしている	アナログをデジタル化 する手順を理解してい る	デジタルとアナログを 区別できる	数値と量の関係を理解 している	数値を知っている		
到達目標 B	シンボルと論理の関係 を真理値と結び付け理 解している	基本シンボルと真理値 を理解している	基本シンボルを理解し てる	論理について知ってい る	真理値表を知っている		
到達目標 C	複雑な論理式を単純化できる	論理式を単純化できる	論理式の基本ルールを 理解している	ブール代数を理解して いる	真理値表と論理式を変 換できる		
到達目標 D	真理値表から論理回路 を組み立てることがで きる	真理値表から論理式を つくり回路図に起こす ことができる	論理式を論理回路に展 開できる	単純な論理式をもとに 回路を書ける	論理式と論理回路の関 連を知っている		
到達目標 E		非同期式カウンターを 設計できる	カウンターの動作を理 解している	順序回路を知っている	フリップフロップを理 解している		

【教科書】

デジタル回路

【参考資料】

プリントを適時配布します

【成績の評価方法・評価基準】

試験、課題、レポート、授業参加状況を総合的に評価します

※種別は講義、実習、演習のいずれかを記入。

科目名		デジタル	年度	20)25		
英語表記		Digital C	Circuits	学期	前	i期	
回数	授業テーマ	各授業の目的	授業内容	到達目標=修得するスキル		評価方法	自己評価
1	デジタルとは	デジタルを知る	1 人間の感覚 2 値 (数値) 3 アナログ	五感、身の回りの事象 2進数、10進 情報のデジタル化			
2	真理値表	真理値表	1 入力 2 結果 3 例	真理値表のしくみ 論理的思考 例			
3	論理記号	基本シンボル	1 NOT 2 AND 3 OR	否定 論理積 論理和			
4	論理 I C特性	ICの取り扱い	1 基本ゲート 2 スレッショルドレベル 3 マージン	I C の特性 閾値 デジタルらしさの基本			
5	論理式	論理式の表現	1 基本定理 2 応用	AND, OR, NOT 組み合わせ			
6	論理式の計算	式の取り扱い	1 式の表示 2 演算	式の基本理論計算例		3	
7	論理式の単純化	式の展開	1 式の単純化 2 定理 3 例題	各種 定理 OR、ANDの交換 例題			
8	カルノー図	図を使った方法	1 図 2 使い方 3 応用	図の説明 利用方法 計算例			
9	論理回路化	回路図	1 回路図	論理式を回路図に変換 変換例 解説			
10	フリップフロップ	記憶回路	1 値の記憶 2 各種FF	値の保持 FFの例 FFの動作タイミング		3	
11	順序回路	カウンタ	1 2進カウンタ	カウンタとは 動作 回路解析		3	
12	非同期	カウンタ	1 非同期	動作 タイミング 問題点			
13	同期式	カウンタ	1 同期	同期 タイミング 問題点			
14	カウンターの例	各種カウンタ	1 10進カウンタ 2 周波数カウンタ	カウンタの応用			
15	まとめ		1 論理回路とシンボル 2 回路の簡単化 3 カウンタ	シンボル真理値表 式の展開と演算 動作		3	

評価方法:1.小テスト、2.パフォーマンス評価、3.その他

自己評価:S:とてもよくできた、A:よくできた、B:できた、C:少しできなかった、D:まったくできなかった

備考 等