科目名	デジタルラ	年度	2025						
英語科目名								学期	前期
学科・学年	電子・電気科 電子工学コース 2年次	必/選	選 2	時間数	60	単位数	2	種別※	実習
担当教員	横山 重明			員の 経験	有	実務経験の 職種		特別 国家公	

【科目の目的】

テレビやオーディオ機器、デジタルカメラ、スマートホンなど私たちの身近な製品の多くがデジタル化され、デジタル技術 の重要性は益々大きなものになっている。より高度にデジタル化された製品、機器の内容を理解するためには、デジタルテ クノロジーの知識が必須である。この科目においては、デジタル回路の動作を理解するとともに、回路設計手法も合せて理 解できるようになるのがねらいである。

【科目の概要】

この授業では、与えられた課題に対し、自ら回路設計を行い、回路を組み立てて実験を行う。それぞれの課題ごとにチェックを行い、最終的に実験レポートを提出する。学生は、組合せ回路および順序回路、応用回路の設計手法を確認し、デジタルICの取り扱いができるようになる。

【到達目標】

学生は、組合せ回路、順序回路、エンコーダ・デコーダー回路などの応用回路の実験を通して、基本的な設計手法とデジタルICの取り扱いができるようになる。多くの種類のデジタルICの中から、適切なICを選択して回路を構成できるようになることを目標にしている。

【授業の注意点】

特に指定が無い限り実験は各個人で行う。実習内容によっては二人一組で実習を行う場合がある。理由のない欠席や遅刻は認めない。欠席または遅刻により課題が終了しない場合は、追実習を受けなければならない。実習室内での飲食は禁止する。実習中は他の学生に配慮し、私語は慎むこと。実習内容についての質問は積極的に受け付ける。授業時数の4分の3以上出席しない者は、未履修となる。

評価基準=ルーブリック										
ルーブリック	レベル 5	レベル4	レベル3	レベル2	レベル1					
評価	優れている	よい	ふつう	あと少し	要努力					
到達目標 A	デジタル回路を活用 した電子工作ができ る	作例を理解している	作例をまねることが できる	作例をまねるのに介 助が必要	マイコンを活用した 電子工作ができない					
到達目標 B	課題以上のことを試 みている	課題を理解している	課題が達成できてい る	正常動作に介助が必 要	課題が達成できない					
到達目標 C	ける各ブロックの役	複雑なシステムをブ ロックごとに捉えて 実装している		正常動作に介助が必 要	動作しない					
到達目標 D	配線が工夫されている	配線が他者にもわか りやすいように色分 け・整理されている	配線が整理されている	配線がスパゲッティ 状になっていて他者 が理解できるように なっていない	動作しない					
到達目標 E	動作しなかったとき に、原因に自力で見 当を付けて解決でき る		動作しなかったとき に、自力で解決でき ない		動作しない					

【教科書】

【参考資料】

各実験毎にプリントを配布する。

【成績の評価方法・評価基準】

実技 50% 実験内容の理解度と到達度を総合的に評価する レポート 30% 実験内容の理解度を確認するために実施する 平常点 20% 積極的な授業参加度、授業態度によって評価する

| |※種別は講義、実習、演習のいずれかを記入。

※和	重別は講義、実習	、演習のいずれかを記	己入。)				
	科目名 デジタルテクノロジー実験			年度	20)25		
	英語表記	学期			学期	前期		
回数	授業テーマ	各授業の目的	授業内容 到達目標=修得するスキル			評価方法	自己評価	
加法無維形/アト		加法標準形による論	1	NANDゲート	NANDゲートICとは何かを知る			
1	1 る論理回路の設	理回路設計方法を理解する	2	加法標準形	加法標準形による論理回路設計がで	きる		
	計法		3	NAND変換	組み合わせ論理回路をNANDゲートで作	れる		
	加法標準形によ	論理回路を用いた防 犯システムの模型を	1	論理回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
2	る論理回路の設		2	2 NAND変換 組み合わせ論理回路をNANDゲートで作れる				
	計①	作る	3	実装	設計した論理回路を実動作させられ	しる		
	加法標準形によ	セレクタ回路を作る	1	論理回路設計	論理ゲートを使った論理回路設計がて			
3	る論理回路の設		2	NAND変換	組み合わせ論理回路をNANDゲートで作	れる		
	計②		3	実装	設計した論理回路を実動作させられ	しる		
	加法標準形によ	よ 審判システムを作る	1	論理回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
4	る論理回路の設		2	NAND変換	組み合わせ論理回路をNANDゲートで作	れる		
計3		3	実装	設計した論理回路を実動作させられ	しる			
	乗法標準形によ	加法標準形による論	1	NORゲート	NORゲートICとは何かを知る			
5 る論理回路の設	理回路設計方法を理	2	乗法標準形	加法標準形による論理回路設計がで	きる			
	計法	解する	3	NOR変換	組み合わせ論理回路をNORゲートで作	れる		
	6 る論理回路の設	論理回路を用いた防 犯システムの模型を 作る	1	論理回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
6			2	NOR変換	組み合わせ論理回路をNORゲートで作	れる		
	計①		3	実装	設計した論理回路を実動作させられ	しる		
	乗法標準形によ	セレクタ回路を作る	1	論理回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
7	る論理回路の設		2	NOR変換	組み合わせ論理回路をNORゲートで作	れる		
	計②		3	実装	設計した論理回路を実動作させられ	る		
	乗法標準形によ	理回路の設 計③ 審判システムを作る	1	論理回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
8			2	NOR変換	組み合わせ論理回路をNORゲートで作	れる		
計③	FI (3)		3	実装	設計した論理回路を実動作させられ			
		1.2.の同敗々並の信	1	論理回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
9	サイレン		2	実装	設計した論理回路を実動作させられ	_		
			3	波形観察	オシロスコープを用いた信号解析がて	ぎきる		
	フリップフロッ	順序回路に必要なフ リップフロップ回路 について理解する	1	FF回路	FF回路の種類を知る			
10	プ回路		2	FF回路の変換	FF回路の変換方法を知る			
			3	タイムチャート	FF回路のタイムチャートを作成でき			
	順序回路の設計	D設計 2進力ウンタを作る	1	順序回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
11			2	実装	順序回路を実動作させられる			
			3					
	順序同級の設計	非同期式8進カウン	1	順序回路設計	論理ゲートを使った論理回路設計がて	ぎきる		
12	(2)	計 非问期式8進ガリン	3	実装	順序回路を実動作させられる			

13 順序回路の設計	非同期式5進カウン タを作る	1	順序回路設計	論理ゲートを使った論理回路設計ができる				
				2	実装	順序回路を実動作させられる		
		3						
	14 カウンタIC	同期式10進カウンタ を使ってみる	1	同期式カウンタIC	同期式カウンタICとは何かを知る			
14			2	実装	順序回路を実動作させられる			
			3					
	7セガカウント	7セグメントLEDをカー ウントアップする	1	実装	7セグメントLEDをカウントアップ動作させる			
15 アップ	アップ		2					
			3					

評価方法:1.小テスト、2.パフォーマンス評価、3.その他

自己評価:S:とてもよくできた、A:よくできた、B:できた、C:少しできなかった、D:まったくできなかった

備考 等